Models of Motion

• How do we describe the motion of a soccer ball?

A train car moves along a long straight track. The graph shows the position as a function of time for this train. The graph shows that the train: *position*

1.speeds up all the time. $\rightarrow a > o$ 2.slows down all the time. $\rightarrow a < o$ 3.speeds up part of the time and slows down part of the time. $\sqrt{4.$ moves at a constant velocity. The graph shows position as a function of time for two trains running on parallel tracks. Which is true:

- ×1. At time $t_{\rm B}$, both trains have the same velocity. \rightarrow slopes are different
- \checkmark 2. Both trains speed up all the time. $A_{R} = 0$
 - (3). Both trains have the same velocity at some time before $t_{\rm B}$.
- ✓ 4. Somewhere on the graph, both trains have the same acceleration.

Kinematic Equations

• Descriptions of Motion (words \rightarrow sentences) x(t), v(t), a = const. $a = \frac{DV}{Dt} = \frac{V_t - V_i}{t - 0} = \frac{V - V_i}{t}$ initial $y = \frac{DV}{Dt} = \frac{V_t - V_i}{t - 0} = \frac{V - V_i}{t}$ initial fine fangeht to $\frac{Dx}{Dx}$ vs st curve

$$at = V - V_i$$
, $V = V_i + at$

